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Abstract—Detecting generic object categories in images and
videos is a fundamental issue in computer vision. However, it
faces the challenges from inter- and intra-class diversity, as well
as distortions caused by viewpoints, poses, deformations, etc. To
solve object variations, this paper constructs a structure kernel
and proposes a multi-scale part-based model incorporating the
discriminative power of kernels. The structure kernel would
measure the resemblance of part-based objects in three aspects:
(1) The global similarity term to measure the resemblance
of the global visual appearance of relevant objects; (2) The
part similarity term to measure the resemblance of the visual
appearance of distinctive parts; (3) The spatial similarity term to
measure the resemblance of the spatial layout of parts. In essence,
the deformation of parts in the structure kernel is penalized
in a multi-scale space with respect to horizontal displacement,
vertical displacement, and scale difference. Part similarities are
combined with different weights, which are optimized efficiently
to maximize the intra-class similarities and minimize the inter-
class similarities by the normalized stochastic gradient ascent
algorithm. Moreover, the parameters of the structure kernel are
learned during the training process with regard to the distribu-
tion of the data in a more discriminative way. With flexible part
sizes on scale and displacement, it can be more robust to the
intra-class variations, poses and viewpoints. Theoretical analysis
and experimental evaluations demonstrate that the proposed
multi-scale part-based representation model with structure kernel
exhibits accurate and robust performance, and outperforms state-
of-the-art object classification approaches.

Index Terms—Object recognition, structure kernel, multi-scale
part-based model, support vector machine, feature extraction.

I. INTRODUCTION

As a fundamental problem in computer vision and artificial
intelligence, object recognition aims to detect objects belong-
ing to certain object category. Recently, there has been rapidly
growing interests in object recognition for a variety of practical
applications, e.g., security surveillance and vehicle navigation
[1]-[3]. Although significant progress has been made in the
past few decades, it is still challenging for intra-class and
inter-class variation, partial occlusion, and distortions from
viewpoints, poses and deformations.
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In the past decades, efforts on pattern recognition have been
largely concentrated on finding the linear relation between
data, such as template matching [18] and dictionary learning
[19]. For data that exhibit nonlinearity in the original feature
space, researchers attempt to map them into high dimensional
Hilbert space by kernel functions in order to seek the linear
analysis. Kernel methods [4]-[14], where kernels are symmet-
ric bivariate functions that capture resemblance between input
data, tackle the problem by discriminating patterns in high
dimensional feature space. In fact, kernel framework provides
generic learning machines by decoupling learning algorithms
from data representation and solving the optimization problem
in quadratic programming. Recent work on deep learning
approaches [35], e.g., deep belief networks, deep Boltzmann
machines and deep auto-encoders, has shown success in
object recognition and classification. The deep architecture
aims to learn complex mappings by transforming their inputs
through multiple layers of nonlinear processing. Huang et
al. [36] adopted convolutional deep belief networks to learn
features for face verification, where local convolutional re-
stricted Boltzmann machines model the global structure of
an object class. Krizhevsky et al. [37] developed a large
deep convolutional neural networks to learn object classes
from a large dataset. Salakhutdinov et al. [38] suggested an
architecture that combines deep learning networks with hierar-
chical nonparametric Bayesian models to learn new concepts
from very few examples. Compared to the elegance of kernel
methods, deep architectures involve nonlinear optimizations
and many heuristics, e.g. searching large tunable parameter
space of deep architectures. Hopefully, kernel machines has
also been shown the benefits from deep learning [39].

Assume Φ(x) : X → H is a function that maps x from
original data space X to a high dimensional Hilbert space H.
A kernel function k is capable of attaining the inner product
of two mapped data in H : k(x,x′) = Φ(x) · Φ(x′) in
the original space without explicitly computing the mapped
data. To ensure the existence of such mapping, a kernel
function must be positive definite, which is also called the
Mercer condition. Many successful applications have been
accomplished by incorporating kernels, e.g., polynomial kernel
and Gaussian kernel, which can attain better performance than
linear analysis in the original data space. Although the positive
definiteness guarantees the implicit mapping of the kernel, the
remaining problem is how we can be sure that the mapped
data in the high dimensional space are “more linear” than
the original data space because the mapping function can not
be obtained analytically in most cases. As a result, kernel
methods are also referred to as “kernel tricks” because of this
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uncertainty. Furthermore, illumination, partial occlusion, and
non-rigid deformation in object recognition would make data
exhibit even larger degree of nonlinearity. Hence, conventional
kernel methods usually inherit limited improvements. The
critical issue in designing a desirable kernel for complex data
is that the kernel should be apt to capture the knowledge and
expectation of the data.

At this moment, the motivation of this paper is to incorpo-
rate the prior knowledge of the data into the kernel so as to
ensure the linearity in the mapped feature space to the largest
extent. Commonly, there are three expectations on an object
category. First, the instances in an object category are expected
to have similar global appearances although local details may
vary from one to another. Second, these objects are much
likely to share some distinctive sub-regions, known as parts,
that are closely related to their functions and categories. Third,
these distinctive parts approximately but not necessarily occur
at similar regions relative to the object, which is the main
reason of the nonlinearity in object recognition. As a result,
we are devoted to taking the three prior knowledge into kernel
design in order to increase the discriminative capability of the
proposed kernel for object recognition.

To exploit the discriminative capability of kernels for object
recognition, two families of kernel methods have been studied
in recent years, namely, the multiple kernel learning and
local kernels. Multiple kernel learning approaches [9]-[14]
combine multiple types of kernels and various kinds of features
into a strong kernel to address the variations of the object
class. MKL-DR [9] uses multiple kernel learning approaches
for dimension reduction. It fuses multiple base kernels, each
of which is based on an image descriptor, into the domain
of kernel matrices with graph embedding. GS-MKL [10]
introduces the groups between an object category as the an
intermediate representation of the object category. The value
of the GS-MKL is not only dependent on the similarity of
the two images but also on the groups (subcategories) of the
images. Sun et al. [11] proposed a forward feature-selection
technique and a coarse-to-fine learning scheme to find a set
of good exemplars for multiple kernel learning. Nilufar et al.
[12] developed a multiple kernel learning method to weight
and select the DoG scale space features by a shift invariant
kernel.

The main drawback of the multiple kernel learning methods
is the high computational complexity. On one hand, multiple
image features have to be extracted, and each feature depicts
certain aspect of image information. On the other hand, each
feature is evaluated by a particular base kernel, and the final
kernel is the weighted combination of the base kernels. These
two steps introduce large dimension of features and intense
computation of the kernel function.

Local kernels [4]-[8] aim to capture the resemblance of
two sets of local features extracted from keypoints. A simple
local kernel is the summation kernel [5] that calculates the
sum of cross-similarities between all possible combinations of
feature vectors. Its discriminant power is often poor because
only a small number of good matchings of local features
contribute to the kernel, which are often undermined by a large
number of bad matchings. “Max kernel” [8] sums only the

similarities of the best matched feature vectors. Unfortunately,
the max kernel is not a Mercer kernel, so that such implicit
mapping to the high dimensional feature space may not
exist. Circular-shift invariant kernel [7] takes the geometric
configuration of a semigroup of keypoints into consideration.
The semi-local constraint of a keypoint is defined to be the
k neighboring angles spanned by the central keypoint and its
k-nearest neighbors, which is invariant under circular-shifts.
Context-dependent kernel [4] takes the context as a part of
the alignment process in designing kernels. The “context” of
a keypoint is defined to be its neighbors, which are indexed
by the relative distances and orientations. The pyramid match
kernel [6] maps unordered feature sets to multi-resolution
histograms, and computes a weighted histogram intersection
in order to find implicit correspondences based on the finest
resolution histogram cell where a matched pair first appears.

There are two major limitations in the local kernels. The
first limitation lies in the bag-of-features representation [15]-
[17], on which the local kernels are defined. Existing keypoint
detectors, e.g., [20]-[22], are very sensitive to background
clutters, so a large number of keypoints may be located in the
background objects. Therefore, the computational complexity
of local kernels is quite large. The second limitation of local
kernels is that they do not make full use of the features of
objects. Keypoint descriptors only encode the local image
features in the neighborhood of keypoints, but global features,
which provide information of the global appearance, are often
ignored. On the other hand, all keypoints have equivalent con-
tributions to the local kernels, but in fact, some local patterns
are more distinctive for certain object categories. Finally, the
spatial configuration, which is a critical cue for object recog-
nition, is often overlooked in local kernels. Although some
local kernels, e.g., [4] [7], use the geometric information of
keypoints in the kernel evaluation, these spatial configurations
are only constrained in local groups of keypoints, which is
very unstable owing to the inconsistency of keypoints.

To tackle these shortcomings of multiple kernel learning
and local kernels, we are motivated to design a strong kernel
that possesses the following four properties. First, the ker-
nel should incorporate global features and local features in
kernel evaluation. Global features capture the global visual
information of the objects, but they are sensitive to occlusion
and deformation. Local features are invariant to deformation
and occlusion, but susceptible to the background clutters. It
is desirable to incorporate global features and local features
in a hierarchical manner to obtain the most informative ob-
servations of the data. Second, the kernel should be flexible
and data-driven. Specifically, the parameters of the kernel
should be automatically adapted to the underlying data, so
that the kernel can be discriminative for different types of
data. Third, the kernel should exploit the structure of data
in a semantic level. For object recognition, the semantic
information of an object class can be the global appearance,
local distinctive regions, spatial layout, etc. Therefore, the
kernel should take these aspects into account. Fourth, the
kernel should be computed efficiently. To achieve this, the
input data should be arranged in a structured way for efficient
evaluation.
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Fig. 1. Diagram of the structure kernel. The structure kernel measures the
similarity of two objects in global visual appearance, part visual appearances
and the spatial layout. The multi-scale part-based object model represents
the parts in multiple scales relative to the object. The normalized stochastic
gradient ascent algorithm optimizes the kernel parameters efficiently.

Hierarchical representation of images has been addressed
in literature. For example, a three-level hierarchical model
adopted nested fixed-size rectangular patches to represent im-
ages at different scales [31]. A family of hierarchical kernels,
which are invariant to translation and some degree of scaling,
were advanced to handle complex data representation in [34].
The Log-polar descriptor has ever been introduced to be
invariant to scaling and rotation [32] [33]. Here, the proposed
model is built on a two-layer, object-part hierarchy with more
flexible and trainable patch sizes, which is very effective for
object recognition. From the perspective of semantic structured
modeling for object recognition, we tackle the invariance in
image representation by exploiting high-level priors in generic
object classes, which is more informative than textures [31]
and local patterns [33].

In this paper, we propose part-based representation of
objects with the structure kernel. Each part is described by
a region-based feature vector, which is densely extracted
from the rectangular window that covers the part. Compared
to keypoint-based features, the desirable part-based repre-
sentation with structured kernel would encode local visual
patterns nearby, region-based feature characterizes the gradient
distribution, and shape information of the patch. It is robust to
background clutters, because in general, there are much less
similar shapes than similar keypoints in the background. The
diagram of the structure kernel is illustrated in Fig. 1. In the
training path, objects are represented in a multi-scale part-
based manner, in which the optimal positions and scales of
parts are localized by a set of detectors. The proposed structure
kernel is tailored to measure the similarity of such multi-scale
part-based objects in a semantic level by increasing the weights
of the discriminative parts and decreasing the weights of the
indistinctive parts via a normalized stochastic gradient ascent
algorithm. Finally, the object classifier is trained with the latent
SVM, which is used to evaluate a new input in the testing path.

The contributions of this paper are three-fold. First, a struc-
ture kernel is constructed that incorporates the discriminant
capability of local kernels into structured, and part-based

object models. Unlike holistic kernels, the proposed structure
kernel is particularly designed for object recognition by incor-
porating the semantic information of object classes into kernel
evaluation. Based on the fact that instances of an object class
would exhibit similar global appearances, distinctive parts,
and certain patterns of spatial layouts, the structure kernel
hierarchically measures the similarity of two objects from
these three aspects, i.e., global appearance, part appearance
and the spatial layout of parts. On the other hand, the structure
kernel also offers a flexible configuration of kernel parameters,
so it can achieve robust discriminative capability for different
object classes by fitting the parameters to the underlying data.
In addition, the structure kernel gives an elegant measurement
of the spatial similarity of two objects from the horizontal
displacement, vertical displacement, and scale difference.

The second contribution of the paper is to develop a multi-
scale part-based object model, which enriches the deformable
part-based object model with multi-scale part representation.
The proposed model represents an object with a global feature
vector that encodes the visual appearance of the entire object,
and several part feature vectors that encode the visual appear-
ances of distinctive parts. In particular, parts are relaxed to
be at neighboring scales of the object, which is more robust
to poses, viewpoints, and intra-class variations, because the
part sizes observed in real scenarios may be slightly different
to the part sizes of the standard model. The spatial layout of
parts is represented in a three-dimensional space consisting of
a two-dimensional spatial coordinates and the scale as the third
dimension. This multi-scale representation of parts is critical
for the extraction of optimal object configurations.

The third contribution of the paper is to propose a learning
algorithm to optimize the parameters of the structure kernel.
Instead of fixed parameterized kernel, the parameters of the
structure kernel are learned during the training process with
regard to the distribution of the data in a more flexible and
discriminative way. To be concrete, the objective function aims
at simultaneously maximizing the intra-class similarities while
minimizing the inter-class similarities. Therefore, the structure
kernel can be adaptive to the structure and distribution of
the underlying data, so that it is discriminative and robust
for various kinds of object classes. A normalized stochastic
gradient ascent algorithm is developed to efficiently solve the
optimization problem.

The rest of the paper is organized as follows: Section II
describes the structure kernel, involving the object model,
local image feature, the definition of structure kernel and its
generalization to the multiple component model. Section III
discusses the optimization of the kernel parameters and the
training of the classifier; Section IV provides the experimental
results on the INRIA person dataset and PASCAL 2007
dataset; Section V draws the conclusions of the paper.

II. STRUCTURE KERNEL

A. Object Representation

In the proposed multi-scale part-based object model with
structure kernel, an object is represented from coarse to fine
with a global feature, a set of part features, and the spatial
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layout of parts. An example from the bicycle class in the
PASCAL 2007 dataset [25] is shown in Fig. 2, where the
part sizes differ among different instances of the bicycle class
because of viewpoint and intra-class variations. Hence, the
optimal sizes of parts range within certain scales, as shown
in Fig. 2 (c). In existing deformable models, parts would be
captured either at a fixed interval of scale relative to the whole
object [30] or at the same scale of the object [23], as in Fig.
3. It would lead to sub-optimal part representation.

(a) (b) (c)

Fig. 2. In real scenarios, part sizes relative to the entire object vary within
certain scales owing to viewpoint difference and intra-class variability. In the
images, objects are normalized to the same size, and the optimal part sizes
are labeled with bounding boxes. (a) Part sizes vary owing to viewpoint; (b)
part sizes vary owing to intra-class variations; (c) the optimal part sizes of
observations range within certain scales.

object 

& parts 

(a)

object 

parts 

(b)

object 

parts 

(c)

Fig. 3. Illustrations of different part representations of part-based models.
(a) Parts are in the same scale of the object [23]; (b) parts are in the fixed
interval of scale relative to the object [30]; (c) parts are in the neighboring
scales of the object (proposed).

Fig. 4. Multi-scale part-based representation of objects. The scale of the
object is denoted as Level 0, and parts are represented in the neighboring
scales of the object, i.e., from Level -2 to Level 2.

To be specific, an object is represented as a n+ 1 tuple:

x = (F0, P1, . . . , Pn), (1)

where F0 is the feature vector of the entire object and Fi is
the feature vector of part i. Pi = (Fi, gi), i = 1, . . . , n are
part models. gi = (xi, yi, si) is the three dimensional vector
denoting the spatial layout of part i, where (xi, yi) is the
coordinate of the part location and si is the part scale. Both
the location and scale of the part is measured with respect
the the entire object for consistent measurement. Specifically,

if the scale of the object is S0, and the scale of the part si
should satisfy S−L ≤ si ≤ SL, where S is the scale factor
and L is the radius of the scale space. The part location (x, y)
is normalized by the width and height of the entire object,
respectively.

The proposed multi-scale part-based representation model
can be illustrated in Fig. 4, where the scale of the entire
object is denoted as Level = 0, and parts are located in the
neighboring scales of the object, i.e., from Level = -2 to Level
= 2. The optimal scales of parts are obtained by searching
from a range of neighboring scales relative to the object.

B. Local Features
Local features encode the visual appearance of the whole

object and parts, and typical histogram of oriented gradients
(HOG) [18] exhibits success in many object detection al-
gorithms [24] [27]. Considering HOG is invariant to small
translation and rotation of local shape, it is adopted as feature
descriptor consisting of two steps: (1) weighted voting into
spatial and orientation cells; (2) contrast normalization over
overlapping spatial blocks.

In the first stage, local orientation histograms in terms of
the gradient orientation θ(x, y) and the gradient magnitude
M(x, y) for each pixel via central difference are attained in
local spatial regions called cells. An image is divided into 8×8
non-overlapping cells, and each pixel contributes a weighted
vote for 9 contrast insensitive orientation bins evenly spaced
over 0◦ to 180◦, and 18 contrast sensitive orientation bins
evenly spaced over 0◦ to 360◦. To reduce aliasing, votes are
interpolated tri-linearly between neighboring orientation bins
and spatial cells. The gradient magnitude M(x, y) is taken as
the voting weight of a pixel. Each cell would generate a 9-D
local histogram of oriented gradients of contrast insensitive
orientation bins, and an 18-D local histogram of oriented
gradients of contrast sensitive orientation bins. Namely, an
18+9 = 27 dimensional local histogram of oriented gradients
is generated for a cell. In the second stage, local histograms of
oriented gradients are normalized in spatial blocks. Each block
consists of 2 × 2 cells and blocks are overlapping, namely,
each cell is covered by four blocks. The local histogram of
orientated gradients in each cell is normalized by four `2

norms of the blocks that cover it. After normalization, each cell
generates a 4× 9 = 36 dimensional feature vector of contrast
insensitive orientation bins, and a 4 × 18 = 72 dimensional
local feature vector of contrast sensitive orientation bins. In
total, a 36 + 72 = 108 dimensional feature vector is generated
for a cell after block normalization.

To reduce dimensionality, the 108 dimensional local feature
vector is projected to 27 sums over 9 contrast insensitive and
18 contrast sensitive orientations, and 4 sums over different
normalization factors. Finally, the 108 dimensional local fea-
ture vector in each cell is compressed into a 27 + 4 = 31
dimensional local feature vector.

C. Definition of Structure Kernel
Given two part-based objects x = {F0, P1, . . . , Pn} and

x′ = {F ′0, P ′1, . . . , P ′n}, the structure kernel K measures their
similarity in visual appearance and spatial layout.
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Definition 1 (Global similarity). Let F0 and F ′0 be the global
feature vectors of two part-based represented objects x and
x′. The global similarity term is defined as:

Sg = k(F0,F
′
0), (2)

where k(·) is a pre-defined standard kernel called base kernel.

The global similarity term measures the resemblance of the
visual appearance of the entire objects. It is analogous to the
Dalal-Triggs detector, which is defined on a rectangular sliding
window. Through various kinds of base kernels, the global
similarity term can be more discriminative to the global shape
of the object class.

Owing to the fact that global features are coarse and
sensitive to partial occlusions and background clutters, we
further define the part similarity term.

Definition 2 (Part similarity). Let {Fi}ni=1 and {F ′i }ni=1 be
two sets of part feature vectors of two part-based represented
objects x and x′. The part similarity term is defined as:

Sp =

n∑
i=1

wik(Fi,F
′
i ), (3)

where {wi}ni=1 are part weights, and k(·) is the base kernel.

The part similarity term measures the resemblance of the
appearance of distinctive parts. For each pair of corresponding
parts Fi and F ′i , the visual similarity would be measured
as k(Fi,F

′
i ). In this paper, the total part similarity term is

obtained as the weighted combination of each individual part
similarity. The weight wi of a part reflects the significance of
the part to the recognition of the object class, and {wi}ni=1

shall be determined during training in Section III-A. The
similarity of parts is reflected by both visual appearance and
spatial layout.

Definition 3 (Spatial similarity). Let {gi}ni=1 and {g′i}ni=1 be
the locations of parts of two part-based represented objects x
and x′, where g = (x, y, s), (x, y) is the position and s is the
scale of the part relative to the object. The spatial similarity
term is defined as:

Ss =

n∑
i=1

exp
{
−γ|gi − g′i|2

}
. (4)

The spatial similarity between a pair of corresponding
parts is measured by a radial basis function, which preserves
the positive-definiteness of the structure kernel. Compared to
existing part deformation on the horizontal and vertical penalty
[30][4], it takes the part similarity of the scale space into
account, i.e., the difference of the part areas. Given a pair of
corresponding parts Pi and P ′i , their spatial similarity would
be measured in three aspects: horizontal displacement, vertical
displacement, and scale difference. It provides more robustness
to viewpoint variations and intra-class differences.

Let Fi, i = 0, 1, ..., n be the feature space of the feature
vectors of the whole object (i = 0) and parts (i = 1, ..., n),
and G = R3 is the feature space of three dimensional part
locations. The feature space of part i can be denoted as Pi =
Fi × G, i = 1, . . . , n. In sum, the feature space of an object

is X = F0×P1× ...×Pn. Given two part-based represented
objects xi and xj , a structure kernel K : X × X → R is
defined as:

Definition 4 (Structure Kernel). Let X be the input space
of part-based objects, and x,x′ ∈ X are two part-based
represented instances. The structure kernel K : X × X → R
between x and x′ is defined as

K(x,x′) = Sg + Sp + λSs = k (F0,F
′
0)

+

n∑
i=1

wik(Fi,F
′
i ) + λ

n∑
i=1

exp
{
−γ(gi − g′i)2

}
,

(5)

where k(·) : Fi × Fi → R is the base kernel, λ ∈ R+ is a
kernel parameter that balances the relative weights between
the appearance similarity and the spatial similarity.
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Fig. 5. Illustration of the structure kernel. Structure kernel measures the
similarity of two part-based objects in three aspects: global visual appearance,
part visual appearances and spatial layout of parts.

The idea of the structure kernel is illustrated in Fig. 5.
Given two part-based represented objects, the structure kernel
measures their similarity in three aspects: global similarity,
part similarity, and spatial similarity. The global similarity
term measures the resemblance of the global shapes of the
objects. The part similarity term measures the resemblance of
the visual appearance of the corresponding parts. The spatial
similarity term measures the resemblance of the spatial layouts
of parts.
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Fig. 6. The graph representation of the structure kernel.

On the other hand, the proposed structure kernel can also be
interpreted as a kernel graph, which is illustrated in Fig. 6. To
be specific, the structure kernel can be represented as a directed
graph G = (V,E), where V is the set of vertices and E is the
set of directed edges. In the graph G, there are n+ 2 vertices,
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including a source vertex s of in-degree 0, followed by n+ 1
vertices {vi}ni=0 of in-degree 2 representing the object and n
distinctive parts. The last part vertex vn is also the sink vertex
of out-degree 0 of the graph. The evaluation of the structure
kernel is to calculate the energy of the directed graph from
the leftmost to the rightmost. For each vertex vi ∈ {vi}ni=0,
there are two edges directed to it from the previous vertex.
The upper edges encode the weighted visual similarities of
parts and the whole object, and the lower edges encode the
spatial similarities of parts. The energy of a vertex is given
by summing over the energy of all edges reaching it and
the energy of its previous vertex. The source vertex s has
zero energy. Therefore, the structure kernel can be efficiently
calculated in this cascading manner when the number of parts
are large.

To guarantee the existence of the high dimensional re-
producing kernel Hilbert space, the structure kernel K must
satisfy the Mercer condition: For any selection of examples
x1, . . .xm ∈ X , the Gram matrix K of the structure kernel
K : X × X → R , which is defined as K(i, j) = K(xi,xj),
is positive definite.

Proposition 1. The structure kernel is a Mercer kernel.

Proof. Recall that a matrix K is positive definite if and only
if αTKα > 0 for all non-zero vector α. We denote the
Gram matrices for the base kernel k as Ki, i = 0, . . . , n,
and the Gram matrix for di(gi, g′i) = exp

{
−γ(gi − g′i)2

}
as

Di, i = 0, . . . , n. As the base kernel k is positive definite and
exp

{
−γ(gi − g′i)2

}
is a radial basis function, Ki and Di are

positive definite. Thus, for any m-dimensional non-zero vector
α,

αTKα = αT

(
n∑
i=1

Ki + λ

n∑
i=1

Di

)
α

=

n∑
i=0

αTKiα+ λ

n∑
i=1

αTDiα ≥ 0.

(6)

Hence, the structure kernel satisfies the Mercer condition.

D. Generalization

Although the structure kernel is tailored for the multi-scale
part-based model, it is also flexible to be utilized in other
object detection frameworks with certain modifications. In
the simplest case, the structure kernel can be degraded to
one single holistic kernel by setting the weights of the part
similarity terms {wi}ni=1 and λ to zeros. That is, there is only
the global similarity term in the structure kernel, which is
evaluated by a base kernel k:

K(x,x′) = k(F0,F
′
0). (7)

Eq. (7) can be used to evaluate rigid template models [18]
[27] for object recognition, and any other pattern recognition
tasks that need to measure the similarity of two inputs with
kernels.

If we use linear kernel as the base kernel and use quadratic
loss function l(x, y) = a1x

2 + a2x+ a3y
2 + a4y+ a5, where

{ai}5i=1 are constants, to penalize the horizontal and vertical
deformations, the structure kernel becomes

K(x,x′) =

n∑
i=0

Fi · F ′i +

n∑
i=1

l(xi − x′i, yi − y′i), (8)

where wi = 1 for i = 1, . . . , n and λ = 1, and the scale
differences are not penalized. Eq.(8) is exactly in the same
form as the filter function of the deformable part model [30].
Therefore, the structure kernel can also be used to evaluate
the discriminatively trained part based models.

The structure kernel becomes a “max” kernel [8] if the
spatial similarity term is omitted, i.e., λ = 0, and part
similarities have unity weights, i.e., wi = 1 for i = 1, . . . , n.

K(x,x′) =

n∑
i=0

k(Fi,F
′
i ). (9)

The definition of a “max” kernel is

Kmax =
1

2

n∑
i=0

max
j
k(Fi,F

′
j) +

1

2

n∑
j=0

max
i
k(Fi,F

′
j) (10)

For the structure kernel, the part similarity can be maximized
if and only if the same parts are chosen, that is,

max
j=0,...,n

k(Fi,F
′
j) = k(Fi,F

′
i ). (11)

Therefore,

K(x,x′) =

n∑
i=0

k(Fi,F
′
i )

=
1

2

n∑
i=0

k(Fi,F
′
i ) +

1

2

n∑
j=0

k(Fj ,F
′
j)

=
1

2

n∑
i=0

max
j
k(Fi,F

′
j) +

1

2

n∑
j=0

max
i
k(Fi,F

′
j)

(12)

E. Multiple component model
To handle the variations of instances in the same cate-

gory caused by viewpoint and intra-class diversity, a popular
solution is to train a multiple component model [28]-[30].
The basic idea is to divide an object class into several
sub-classes, each of which represents either a sub-category
(parrot/hummingbird/eagle) or a view from certain angle (front
view/side view) of the class, and train a classifier for each sub-
class. The proposed structure kernel can be implemented in a
multiple component framework as well.

The diagram of the multiple component model with struc-
ture kernel is illustrated in Fig. 7. First, positive examples
X = {xi}Ni=1 are grouped into C sub-classes {Xc}Cc=1

satisfying X1

⋃
. . .
⋃
XC = X and ∀p 6= q,Xp

⋂
Xq = ∅,

where Xc = {xci}
Nc
i=1,

∑C
i=1Nc = N . Clustering of positive

examples can be based on the aspect ratios or the features
of the positive examples by the K-means algorithm. Then,
a specific structure kernel Kc is defined on each sub-class
Xc, and a corresponding classifier fKc(x) can be trained. For
evaluation, an input object x is processed by the C classifiers
to produce C component scores fK1

(x), . . . , fKC
(x). The

final classification score is the maximum of the component
scores.



7

K-mean clustering

1

1

1

1

N

ii
X x

…

2

1

2

2

N

iiX x
CN

i

C

iCX 1
x

N

ii
X

1
x

Structure kernel training

x
1K
f x

2K
f x

CK
f…

Multiple component classification

xf

Fig. 7. Multiple component model with structure kernel.

III. TRAINING OF CLASSIFIER

The proposed classifier evaluates an input data x with the
following discriminant function

f(x) = ρ · φ(x) + b, (13)

where φ(·) : Rd → Rh is a function that maps the input
data from its original d-dimensional space to h-dimensional
Hilbert space, where h is greater than d and possibly infinite.
ρ ∈ Rh is a vector in the h-dimensional space, and b is a
constant. However, the explicit analytic expression of φ(·) can
not be obtained, and its inner product can be calculated by the
structure kernel:

K(x,x′) = φ(x) · φ(x′). (14)

As the structure kernel K is parameterized by w = {wi}ni=1,
where n is the number of parts, the mapping function φ(·)
is also parameterized by w. Finally, the classifier f(x) is
parameterized by ρ, b and w. It is supposed to produce high
value if x belongs to the object class of interest.

The optimization of Eq. (13) over ρ, b and w is intractable,
because the relation of φ(·) and w is unknown. Hopefully,
with the help of the structure kernel, a two-step iterative
optimization algorithm is proposed to train the classifier in
Eq. (13). In the first step, we optimize φ(·) over w so
that the distance between two positive examples is small,
and the distance between a positive example and a negative
example is large in the h-dimensional space. In the second
step, we fix w, and optimize a SVM formulation over ρ
and b to get a maximum margin classifier. By repeating the
two steps recursively, the optimal classifier parameters and
kernel parameters can be obtained in a joint manner. Section
III-A introduces the optimization of the kernel parameters,
and Section III-B introduces the optimization of the classifier
parameters.

A. Optimizing kernel parameters

Given the unordered training set {(xi, yi)}Ni=1, where xi ∈
X and yi ∈ {−1,+1}, we expect the structure kernel to
produce high values on intra-class objects (implying high
similarity) and low values on inter-class objects (implying
low similarity). Let xp and xq be two objects, their similarity
measured by the structure kernel is

K(xp,xq) =k(F
(p)
0 ,F

(q)
0 ) +

n∑
i=1

wik(F
(p)
i ,F

(q)
i )

+ λ

n∑
i=1

exp{−γ(g
(p)
i − g

(q)
i )2}

(15)

For all pairs of positive examples xp and xq satisfying yp =
+1 and yq = +1, we expect high similarity between them. The
formula of maximizing the intra-class similarity is attained as

max
w

E+(w) =
N∑
p=1

N∑
q=p+1

K(xp,xq)

s.t.


n∑
i=1

wi = 1

wi ≥ 0, i = 1, . . . , n

yp + yq = +2

,

(16)

where w = (w1, . . . , wn). As the global similarity term and
spatial similarity term in the structure kernel is irrelevant of
w, Eq. (16) is consequently equivalent to

max
w

E+(w) =

N∑
p=1

N∑
q=p+1

n∑
i=1

wik(F pi ,F
q
i )

s.t.


n∑
i=1

wi = 1

wi ≥ 0, i = 1, . . . , n

yp + yq = +2

,

(17)

where only the part similarity term is involved. In Eq. (17),
we maximize the sum of all possible cross similarities of
intra-class objects, while satisfying

∑n
i=1 wi = 1 and the

positiveness of wi.
On the other hand, if xp is a positive example and xq is

a negative example, we expect low similarity between them.
Likewise, the formula of minimizing the inter-class similarity
is

min
w

E−(w) =

N∑
p=1

N∑
q=p+1

n∑
i=1

wik(F pi ,F
q
i )

s.t.


n∑
i=1

wi = 1

wi ≥ 0, i = 1, . . . , n

yp + yq = 0

.

(18)

Since minimizing the similarities between two inter-class
objects is equivalent to maximizing its negative similarities,
Eq. (17) and Eq. (18) can be unified by multiplying the part
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similarity term
∑n
i=1 wik(F pi ,F

q
i ) by yqyp. Thus, the optimal

values for the part weights {wi}ni=1 is the maximizer of

max
{wi}ni=1

E(w) =

N∑
p=1

N∑
q=p+1

ypyq

n∑
i=1

wik(F pi ,F
q
i )

s.t.


n∑
i=1

wi = 1

wi ≥ 0, i = 1, . . . , n

yp + yq ≥ 0

.

(19)

Eq. (19) maximizes the cross-similarities between two pos-
itives examples and minimizes the cross-similarities between
a positive example and a negative example. For two negative
examples, we have no prior expectation about whether they are
alike or not. Therefore, the evaluation of two negative objects
is not involved in Eq. (19).

To solve Eq. (19) efficiently, we develop a normalized
stochastic gradient ascent algorithm. Obviously, the gradient
of E(w) in Eq. (19) with respect to w is

∂E(w)

∂w
=



N∑
p=1

N∑
q=p+1

ypyqk(F p1 ,F
q
1 )

. . .
N∑
p=1

N∑
q=p+1

ypyqk(F pn ,F
q
n)


. (20)

In the standard gradient ascent method for unconstraint max-
imization problems, w is updated towards the gradient ascent
direction in each step by

w(t+1) = w(t) + α
∂E(w(t))

∂w(t)
, (21)

where α is a small positive constant. However, the computation
of the gradient is very computationally intensive in Eq. (20),
which includes all the combinations of inter-class examples
and intra-class examples.

In the normalized stochastic gradient ascent algorithm,
we stochastically sample two examples xu and xv in each
iteration, at least one of which is a positive example (note that
the formula does not contain negative-negative similarity). We
approximate the gradient of Eq. (20) with the sub-gradient of
the samples

∇ = yvyu [k(F u1 ,F
v
1 ), k(F u2 ,F

v
2 ), . . . , k(F un ,F

v
n )]

T
, (22)

and in each iteration, we move w a step towards the gradient
ascent direction.

Notice Eq. (19), the constraint
∑n
i=1 wi = 1 may be

violated during the update of w. Thus, we normalize the
gradient ∇ as

∇′ = yvyu


k(F u1 ,F

v
1 )− 1

n

n∑
i=1

k(F ui ,F
v
i )

. . .

k(F un ,F
v
n )− 1

n

n∑
i=1

k(F ui ,F
v
i )

 . (23)

In each iteration, if the initial w(t) satisfies
∑n
i=1 w

(t)
i = 1,

we have w(t+1) = w(t) + α∇′ and
n∑
i=1

w
(t+1)
i =

n∑
i=1

(
k(F ui ,F

v
i )− 1

n

n∑
j=1

k(F uj ,F
v
j )
)

· αyvyu +

n∑
i=1

w
(t)
i =

n∑
i=1

w
(t)
i + α · 0 = 1.

(24)

Given an initial w(0) satisfying
∑n
i=1 w

(0)
i = 1, it can be

guaranteed that the constraint is always satisfied during the
iterations of the normalized stochastic gradient ascent method.

Next, we prove that the energy function E(w) on the
samples xu and xv would keep increasing by the normalized
stochastic gradient ascent algorithm.

E(w(t+1))− E(w(t))

= yvyu

n∑
i=1

w
(t+1)
i k(F u

i ,F
v
i )− yvyu

n∑
i=1

w
(t)
i k(F u

i ,F
v
i )

=

n∑
i=1

[
αyvyu

(
k(F u

i ,F
v
i )−

1

n

n∑
j=1

k(F u
j ,F

v
j )
)]

· yvyuk(F u
i ,F

v
i )

= αy2vy
2
u

[ n∑
i=1

k(F u
i ,F

v
i )k(F

u
i ,F

v
i )

− 1

n

n∑
i=1

k(F u
i ,F

v
i )

n∑
i=1

k(F u
i ,F

v
i )
]
≥ 0.

(25)

As the root square mean is always greater than or equal to
the arithmetic mean, the increment of E(w) in every iteration
is always non-negative. In turn, the optimal solution of w can
be obtained with sufficient number of samples.

B. Training classifier

The object classifier based on the proposed structure kernel
can be trained in a semi-supervised way with a latent SVM.
The positive examples are only labeled with bounding boxes
covering the whole object, but parts are not labeled. During
training, the most distinctive parts can be automatically iden-
tified, and their locations are treated as latent variables which
are iteratively optimized with the classifier.

The set of positive images is denoted as TP = {IPi }
Np

i=1, and
each positive image patch contains only one object of interest.
The set of negative images is denoted as TN = {INi }

Nn
i=1, and

each negative image has no instances of the object category.
Candidate objects and parts are extracted by a global detector
D0 = (β0, b0) and n part detectors {Di = (βi, bi)}ni=1.
Both the global detector and part detectors are linear SVM
classifiers, and an image patch Fi is scored by

fDi(Fi) = βi · Fi + bi, i = 0, . . . , n. (26)

Given the structure kernel K and the training set
{(xi, yi)}Ni=1, where xi ∈ X and yi ∈ {−1,+1}, a new
input x ∈ X is scored by the discriminate function f(x)
parameterized by {αi}Ni=1 and b:

f(x) =

N∑
i=1

αiyiK(xi,x) + b, (27)
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or equivalently,

f(x) =

Ns∑
i=1

αsiysiK(xsi,x) + b, (28)

where the subscript s denotes support vectors, because α = 0
for all non-support vectors.

In the training stage, we determine the global detector and
part detectors {Di}ni=0 , {αi}Ni=1 and the bias term b. The
procedure of the training algorithm is shown in Algorithm 1.

Algorithm 1: Training of classifier

Input: Positive images: TP = {IPi }
Np

i=1

Negative images: TN = {INi }
Nn
i=1

Part number: n
Output: Global detector and part detectors {Di}ni=0

Classifier: f
D0 = train linear SVM(TP , TN );
{βi}ni=1 = part extraction(β0, n);
for i = 1 to n do

Pi = maximum response(βi, TP );
Di = train linear SVM(Pi, TN );

end
for r = 1 to relabel do

[XP , XN ] = relabel(XP , XN , f , {Di}ni=0);
w = optimal part weights(XP , XN );
X ′P ⊂ XP , X ′N ⊂ XN ;
for m = 1 to datamine do

f = train classifier(X ′P , X ′N );
[X ′P , X

′
N ] = [X ′P , X

′
N ]− easy examples;

[X ′P , X
′
N ] = [X ′P , X

′
N ]+ hard examples;

end
end

1) Training detectors and extracting parts: The global
detector is trained with a linear SVM, which is similar to [18].
First, the aspect ratio of the global detector is the mean of the
aspect ratios of the bounding boxes in the positive images. The
area of global detector is not larger than 80% of the bounding
boxes so that it can be put in most images to search for the
positive examples. Second, all the positive images and negative
images are resized to the size of the global detector, and HOG
features are computed for all the images, which is described
in Section II-B. Finally, a linear SVM classifier D0 is trained
with the positive and negative feature vectors.

After the initial global detector is trained, we run the global
detector on the image pyramid of each positive image IPi . The
image patch that produces the highest response serves as a new
positive example in place of IPi . To ensure the effectiveness
of the global detector, it is re-trained with the new training
set, and negative patches are also randomly generated from
the original negative image set. Eventually, the final global
detector is obtained. Fig. 8 (b) visualizes the global detector
of the person class by training with INRIA person dataset.

Parts are defined as sub-regions of objects which have
similar visual appearance in the object class. An image patch
F is scored by the global detector D0 as β0 · F + b0. As

all elements in the feature vector F are non-negative, a larger
value in β0 would increase the probability that the image patch
belongs to the object category. In another word, the regions
in β0 that have high values are more distinctive in identifying
the object category, therefore they are considered as “parts”.

Once the global detector is obtained, distinctive parts can
be found by localizing high energy regions in β0, which is
illustrated in Fig. 8 (c). To be specific, given the number
of parts n, a set of rectangular mean filters are generated.
These filters have different aspect ratios, but have similar
areas, so that n parts can cover around 80% of the area of
the entire object. Then, β0 is convoluted with all mean filters,
and the filter responses undergo a non-maximum suppression
to exclude overlapping responses. Finally, the n (or n − 1 in
some cases) symmetric regions that give the highest responses
are chosen as parts, which is demonstrated in Fig. 8 (a).

The initial part detectors {βi}ni=1 are defined to be the
corresponding coefficients in β0. Similar to the re-training
of the global detector, each initial part detector extracts a
highest-response patch in each positive image, and the final
part detector is trained with this new training set.

(a) (b) (c)

Fig. 8. (a) Parts are sub-regions in an object with similar visual appearances
in the object category; (b) Global detector of the “person” category; (c) four
parts are detected by localizing high energy regions in the global detector.

2) Training Classifier: We train the classifier with a latent
SVM, which treats the configuration of the object and parts
as latent variables. In each round, we relabel the training set
by detecting the best configuration of each example with the
global detector, part detectors and the object classifier, and use
this new training set to re-train the classifier.

Specifically, for an image F , the responses of the global
detector and part detectors at multiple scales can be denoted
as Rli = F l ∗ Di, i = 0, . . . , n, where F l is the feature map
of the image at scale l. Subsequently, a set of positive patches
Pi = {Pij}mj=1, i = 0, . . . , n can be obtained, where Pij is
a patch at location p and scale l satisfying Rli(p) > 0. For
a global location P0 ∈ P0, the optimal object configuration
x = (F0, P1, . . . , Pn) can be obtained by

max f(x)

s.t.

{
Pi ∈ Pi, i = 1, . . . , n

|li − l0| ≤ L, i = 1, . . . , n

(29)
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That is, the optimal part is the one in the patch set that gives
the highest classification score. For the positive examples, the
relabeled objects should overlap with the bounding box at least
50%, and for the initial positive examples, where the object
classifier is not available, the optimal parts are the ones within
the bounding box that gives the highest responses.

Once the configuration of parts is fixed, the problem be-
comes training a standard kernelized SVM classifier:

max
αi

−1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj) +

N∑
i=1

αi

s.t.


0 ≤ αi ≤ C, i = 1, . . . , N
N∑
i=1

αiyi = 0
.

(30)

With the matrix notation, it can be written as

min
α

1

2
αTKα+ cα

s.t.

{
α ≥ 0

αTy = 0
,

(31)

where K is the Gram matrix of the structure kernel K satisfy-
ing K(i, j) = K(xi,xj). Eq. (31) is a quadratic programming
problem and can be solved by the quadratic optimization
algorithms.

Due to the limitation of computational capability and stor-
age, we use a subset of the examples for training in each
round, denoted as X ′P and X ′N . After the classifier is obtained,
we remove easy examples from the current training set, and
add hard examples from the rest of the examples to the
current training set. Specifically, an easy example is correctly
classified and also far from the separating hyperplane, i.e., xi
is an easy example if yif(xi) > 1 + σ, where σ is a small
positive constant. Otherwise, it is set as a hard example.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm on two datasets: the
INRIA person dataset [18] and the more challenging PASCAL
2007 dataset [25]. For each dataset, we shall compare our
method with other state-of-the-art methods in both accuracy
and computational complexity. The experiments are performed
on a computer with 3.40GHz 8-core Intel Core i7-3770 CPU
and Ubuntu 12.04 operating system.

A. Evaluation on INRIA person dataset

Initially, we use the INRIA person dataset [18] to evaluate
the performance of the proposed structure kernel. The positive
training set consists of 1,208 images and their left-right
reflections, i.e., 2,416 images in all. The negative training set
contains more than 10,000 image patches randomly sampled
from 1,218 images which do not contain any instance of
person. The test set is composed of 1,216 positive image
patches and 12,160 negative image patches. The parameters
of the classifier are: λ = 0.1, C = 0.01, γ = 1, part number
is 4, the scale factor is 0.9, and the scale radius L = 2. The

structure kernel K would be tested with three different base
kernels:

1) Linear kernel: k(F ,F ′) = F · F ′.
2) Polynomial kernel: k(F ,F ′) = (F · F ′ + 1)2.
3) RBF kernel: k(F ,F ′) = exp(−|F − F ′|2).
For comparison, we also test the Dalal-Triggs detector [18],

deformable part-based model (DPM) [30], and three local
kernels - summation kernel [5], max kernel [8] and p-kernel
[7] - on the INRIA person dataset. The Dalal-Triggs detector
trains a linear SVM on the HOG features of the training set.
The detector of DPM on the INRIA person dataset is provided
in [26], which contains one component with 6 parts. Therefore,
only the testing time of their method is recorded. Local kernels
are defined on two sets of unordered local features. Similar
to [7] [17] [8], we use the Harris corner detector to extract
keypoints, and encode the local feature of a keypoint with the
SIFT descriptor [20]. The order of the p-kernel is 9, which is
the same as the experiment in [7]. A linear kernel is served
as the base kernel of the three local kernels. The average
precision (AP), training time and testing time (in minutes)
of the above methods are provided in Table I.

In general, the proposed structure kernel with three different
base kernels obtains the best performance, and the three local
kernels obtain the worst performances. Within the three base
kernels in the structure kernel, the RBF base kernel achieves
the best performance. Although DPM offers a more flexible
representation of objects than the Dalal-Triggs detector, it gets
slightly worse result. It can be derived from the fact that
the intra-class variations and poses of the person images in
INRIA person dataset are quite limited, in turn, a root filter is
appropriate and discriminative enough to classify the person
class. To some extent, the parts and deformation costs may
result in unexpected errors. Within the three local kernels,
the p-kernel gets the best performance, and the summation
kernel gets the worst performance. As the summation kernel
combines all pairs of features equivalently, good matches may
be swamped by large number of bad matches. However, the
p-kernel significantly shrinks the scores of the bad matches,
so the good matches dominate the output. Therefore, p-kernel
can get better than the summation kernel.

TABLE I
PERFORMANCE OF DIFFERENT DETECTORS

AP Training time Testing time
SK (linear) 0.938 133 93
SK (polynomial) 0.946 142 97
SK (RBF) 0.954 140 96
DPM 0.917 N/A 77
Dalal-Triggs 0.927 87 52
Sum-kernel 0.811 192 174
Max-kernel 0.852 188 161
p-kernel 0.910 190 166

TABLE II
AVERAGE PRECISION OF DIFFERENT PART NUMBERS

Number of parts 3 4 5 6
Average precision 0.934 0.954 0.930 0.945
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Fig. 9. Impact of part number on the performance of structure kernel. (a)
Four different configurations of parts; (b) precision-recall curves.

To evaluate the impact of the part number on the perfor-
mance of the structure kernel, we change the part number
from 3 to 6 as shown in Fig. 9 (a) and train classifiers where
k is a RBF kernel. Fig. 9 (b) shows the precision recall curves,
and the average precision values are listed in Table II. It can
be seen that the structure kernel is fairly robust with different
part numbers, and the part number with the best performance
is 4 for the INRIA person dataset.

B. Evaluation on PASCAL 2007 dataset

In addition to the INRIA person dataset, we also evaluate
our method on a much more challenging dataset – the PAS-
CAL 2007 dataset [25], which is composed of 20 categories
of objects. The configuration of the training set and the test
set of the PASCAL 2007 dataset can be found in [25]. For
each object category, we divide the object into 4 parts and
train a classifier using the proposed structure kernel with the
RBF kernel as the base kernel, λ = 0.1, γ = 1 and C = 0.01.
The global detector for each category is visualized in Fig. 10.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

(n) (o) (p) (q) (r) (s) (t)

Fig. 10. Visualization of the global detectors of 20 object classes in PASCAL
2007 dataset. (a) aeroplane, (b) sofa, (c) bus, (d) car, (e) dining table, (f) train,
(g) boat, (h) motorbike, (i) cow, (j) bicycle, (k) dog, (l) bird, (m) cat, (n) sheep,
(o) monitor, (p) horse, (q) plant, (r) chair, (s) bottle, (t) person.

We compare the performance of our method with two

state-of-the-art methods, i.e., Dalal-Triggs detector [18] and
deformable part-based model (DPM) [30], on the PASCAL
2007 dataset. The configuration of the Dalal-Triggs detector is
similar to Section IV-A. The DPM detectors on the 20 object
classes in PASCAL 2007 dataset are provided in [26]. The
average precision values and ranks of the three approaches on
the 20 object classes are displayed in Fig. 11 and Table III.
The last column of Table III shows the mean AP and mean
rank of each method.
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Fig. 11. Average precisions of the structure kernel, DPM and Dalal-Triggs
detector on the 20 object classes in the PASCAL 2007 dataset. The dash lines
indicate the mean APs of the three methods.

TABLE III
AVERAGE PRECISIONS ON THE PASCAL 2007 DATASET (AP(RANK))

SK DPM Dalal-Triggs
1. person 0.584 (1) 0.546 (3) 0.558 (2)
2. bird 0.410 (2) 0.259 (3) 0.414 (1)
3. cat 0.499 (1) 0.289 (3) 0.340 (2)
4. cow 0.823 (1) 0.636 (3) 0.688 (2)
5. dog 0.495 (1) 0.361 (3) 0.440 (2)
6. horse 0.734 (2) 0.771 (1) 0.643 (3)
7. sheep 0.739 (1) 0.664 (2) 0.388 (3)
8. aeroplane 0.683 (2) 0.726 (1) 0.588 (3)
9. bicycle 0.726 (2) 0.872 (1) 0.559 (3)
10. boat 0.568 (2) 0.586 (1) 0.229 (3)
11. bus 0.823 (2) 0.855 (1) 0.745 (3)
12. car 0.819 (2) 0.854 (1) 0.703 (3)
13. motorbike 0.559 (2) 0.646 (1) 0.394 (3)
14. train 0.931 (1) 0.746 (2) 0.701 (3)
15. bottle 0.645 (1) 0.515 (3) 0.590 (2)
16. chair 0.587 (1) 0.565 (2) 0.512 (3)
17. table 0.584 (1) 0.326 (3) 0.406 (2)
18. plant 0.588 (1) 0.539 (2) 0.522 (3)
19. sofa 0.542 (1) 0.399 (3) 0.413 (2)
20. monitor 0.743 (1) 0.726 (2) 0.386 (3)
mean 0.655 (1.35) 0.594 (2.05) 0.511 (2.55)

Over the 20 object classes in the PASCAL 2007 dataset, the
structure kernel obtains the highest APs in 12 object classes,
the DPM obtains the highest APs in 7 object classes, and
the Dalal-Triggs detector obtains the highest AP in 1 object
class. From the perspective of mean AP, the structure kernel
gets the highest mean AP (0.655) among the three approaches,
DPM comes second (0.594), and Dalal-Triggs detector has the
lowest mean AP (0.511). As the mean AP metric can possibly
be affected by outliers, we further evaluate the average rank
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of each method. The structure kernel has the highest mean
rank (1.35) in the three approaches, DPM comes second in
mean rank (2.05), and Dalal-Triggs detector has the lowest
mean rank (2.55). In conclusion, the proposed structure kernel
achieves the best overall result in the 20 object classes in the
PASCAL 2007 dataset compared with the DPM and Dalal-
Triggs detector.

1) Performances of different base kernels: We also evaluate
the performances of different base kernels with 4 object classes
in the PASCAL 2007 dataset: bus, aeroplane, cat and cow,
each of which is divided into 4 parts. Three base kernels are
tested, i.e., linear kernel, polynomial kernel, and RBF kernel,
as defined in Section IV-A. Fig. 12 and Table IV, respectively,
depict the precision-recall curves and the average precision
values.
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Fig. 12. Performances of different base kernels. (a) cat, (b) bus, (c) aeroplane,
(d) cow.

TABLE IV
AVERAGE PRECISIONS OF DIFFERENT BASE KERNELS

cat bus aeroplane cow
linear kernel 0.472 0.599 0.579 0.782
polynomial kernel 0.343 0.733 0.622 0.803
RBF kernel 0.499 0.823 0.683 0.823

In all of the test objects classes, it can be observed that the
RBF kernel achieves the best effect. Thus, the RBF kernel can
be taken as the more discriminative base kernel in the structure
kernel.

2) Performance of multi-scale part representation: We
evaluate the performance of the multi-scale part representation
on the car, aeroplane and horse object classes in the PASCAL
2007 dataset. RBF kernel is utilized as the base kernel, and
each object is divided into 4 parts. The scale factor between
two consecutive scales is 0.9, and the radius of the scale space
L, which is defined in Section II-A, ranges from 0 to 4 to
demonstrate its impact on the average precision and runtime.

If L = 0, parts are in the same scale as the whole object,
which is a mono-scale object model. If L > 0, there are 2L+1
different scales that parts may exist, consisting of the scale of
the whole object, L scales that are larger than the scale of the
whole object and L scales that are smaller than the scale of
the whole object.
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Fig. 13. AP∼L and runtime∼L curves. (a) car, (b) aeroplane, (c) horse.

The AP∼L curves and runtime∼L curves of the three object
classes are shown in Fig. 13. The figure shows that the
performance of the classifiers can be improved by introducing
the multi-scale part representation. As the relative portion of
a part may vary with respect to the viewpoint and intra-class
variations in real scenarios, to capture the optimal parts in mul-
tiple scales is both intuitively reasonable and experimentally
effective. However, to search for parts in multiple scales can
take more time than to do so in just one scale. The runtime∼L
curves in Fig. 13 exhibit that the relation between the runtime
and the scale radius L is almost linear. Empirically, we choose
L = 2 in the experiments for both computational efficiency
and performance.

3) Performance of weighted combination of part similari-
ties: We also evaluate the influence of the weighted combina-
tion of part similarities on the performance of the structured
kernel with bicycle, sofa, bird and diningtable object classes in
the PASCAL 2007 dataset. We choose the RBF kernel as the
basic kernel, and assign 4 parts for each object class. The
radius of the scale space is 2 and the scale factor is 0.9.
For each object class, we train a classifier with the weighted
combination of part similarities in the structure kernel and a
classifier without it, i.e., all parts are endowed with the same
weight wi = 1/n, for i = 1, . . . , n. The precision-recall curves
of the two kinds of classifiers on the test object classes are
demonstrated in Fig. 14, and the average precision values are
listed in Table V.

TABLE V
AVERAGE PRECISIONS OF WEIGHTED COMBINATION OF PARTS

bicycle sofa bird diningtable
w/o weighted combination 0.720 0.515 0.403 0.546
with weighted combination 0.726 0.542 0.411 0.584

Experimental results show that the performance of the
classifier can be improved by giving different weights to parts
based on their distinctiveness of the object class.

4) Computational complexity: The training time and testing
time varies with several factors, such as the number of images
in the training set, the number of parts of the object category.
With 3.40GHz 8-core Intel Core i7-3770 CPU and Ubuntu
12.04 operating system, it typically takes about 4 hours to train
a 4-part person classifier on the PASCAL 2007 dataset with
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Fig. 14. Precision-recall curves of classifiers with and without weighted
combination of part similarities. (1) bicycle, (2) sofa, (3) bird, (4), diningtable.

4,390 positive examples (trainval) and approximately 43,900
negative examples. On the other hand, it takes about 2 hours to
test the classifier on the testing set consisting of 4,192 positive
images and 4,1920 negative images.

V. CONCLUSIONS

In this paper, we propose a novel positive definite kernel
called “structure kernel” which measures the similarity of part-
based represented objects in both global appearance, parts
appearance, and spatial layout of parts. It incorporates the
discriminative power of kernels into flexible part-based object
models, and the deformation of parts in the structure kernel
is penalized in a multi-scale sense with respect to horizontal
displacement, vertical displacement, and scale difference. Part
similarities are combined with different weights, which are
optimized efficiently to maximize the intra-class similarities
and minimize the inter-class similarities by the normalized
stochastic gradient ascent algorithm. The parameters of the
structure kernel are learned during the training process with
regard to the distribution of the data in a more flexible
and discriminative way. Theoretical analysis and experimental
evaluations demonstrate that the proposed multi-scale part-
based representation is more robust to viewpoint variations,
poses, and intra-class differences.
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